Package: BASSLINE 0.0.0.9010

BASSLINE: Bayesian Survival Analysis Using Shape Mixtures of Log-Normal Distributions

Mixtures of life distributions provide a convenient framework for survival analysis: particularly when standard models such as the Weibull are unable to capture some features from the data. These mixtures can also account for unobserved heterogeneity or outlying observations. BASSLINE uses shape mixtures of log-normal distributions and has particular applicability to data with fat tails.

Authors:Catalina Vallejos [aut], Nathan Constantine-Cooke [cre, aut]

BASSLINE_0.0.0.9010.tar.gz
BASSLINE_0.0.0.9010.zip(r-4.5)BASSLINE_0.0.0.9010.zip(r-4.4)BASSLINE_0.0.0.9010.zip(r-4.3)
BASSLINE_0.0.0.9010.tgz(r-4.4-x86_64)BASSLINE_0.0.0.9010.tgz(r-4.4-arm64)BASSLINE_0.0.0.9010.tgz(r-4.3-x86_64)BASSLINE_0.0.0.9010.tgz(r-4.3-arm64)
BASSLINE_0.0.0.9010.tar.gz(r-4.5-noble)BASSLINE_0.0.0.9010.tar.gz(r-4.4-noble)
BASSLINE_0.0.0.9010.tgz(r-4.4-emscripten)BASSLINE_0.0.0.9010.tgz(r-4.3-emscripten)
BASSLINE.pdf |BASSLINE.html
BASSLINE/json (API)
NEWS

# Install 'BASSLINE' in R:
install.packages('BASSLINE', repos = c('https://nathansam.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/nathansam/bassline/issues

Pkgdown site:https://www.constantine-cooke.com

Uses libs:
  • openblas– Optimized BLAS
  • c++– GNU Standard C++ Library v3
Datasets:
  • cancer - VA Lung Cancer Trial Dataset

On CRAN:

openblascpp

2.70 score 26 exports 40 dependencies

Last updated 3 years agofrom:d0cc4e82cc. Checks:1 OK, 8 NOTE. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKDec 12 2024
R-4.5-win-x86_64NOTEDec 12 2024
R-4.5-linux-x86_64NOTEDec 12 2024
R-4.4-win-x86_64NOTEDec 12 2024
R-4.4-mac-x86_64NOTEDec 12 2024
R-4.4-mac-aarch64NOTEDec 12 2024
R-4.3-win-x86_64NOTEDec 12 2024
R-4.3-mac-x86_64NOTEDec 12 2024
R-4.3-mac-aarch64NOTEDec 12 2024

Exports:BASSLINE_convertBF_lambda_obs_LLAPBF_lambda_obs_LLOGBF_lambda_obs_LSTBF_u_obs_LEPCaseDeletion_LEPCaseDeletion_LLAPCaseDeletion_LLOGCaseDeletion_LNCaseDeletion_LSTDIC_LEPDIC_LLAPDIC_LLOGDIC_LNDIC_LSTLML_LEPLML_LLAPLML_LLOGLML_LNLML_LSTMCMC_LEPMCMC_LLAPMCMC_LLOGMCMC_LNMCMC_LSTTrace_plot

Dependencies:clicodacolorspacefansifarverggplot2gluegtableisobandlabelinglatticelifecyclemagrittrMASSMatrixMatrixModelsmcmcMCMCpackmgcvmunsellmvtnormnlmepillarpkgconfigquantregR6RColorBrewerRcppRcppArmadillorlangscalesSparseMsurvivaltibbletruncnormutf8vctrsVGAMviridisLitewithr

Introduction to BASSLINE

Rendered fromBASSLINE.Rmdusingknitr::rmarkdownon Dec 12 2024.

Last update: 2022-04-03
Started: 2019-12-28

Readme and manuals

Help Manual

Help pageTopics
Convert dataframe with mixed variables to a numeric matrixBASSLINE_convert
Outlier detection for observation for the log-Laplace modelBF_lambda_obs_LLAP
Outlier detection for observation for the log-logistic modelBF_lambda_obs_LLOG
Outlier detection for observation for the log-student's t modelBF_lambda_obs_LST
Outlier detection for observation for the log-exponential power modelBF_u_obs_LEP
VA Lung Cancer Trial Datasetcancer
Case deletion analysis for the log-exponential power modelCaseDeletion_LEP
Case deletion analysis for the log-Laplace modelCaseDeletion_LLAP
Case deletion analysis for the log-logistic modelCaseDeletion_LLOG
Case deletion analysis for the log-normal modelCaseDeletion_LN
Case deletion analysis for the log-student's t modelCaseDeletion_LST
Deviance information criterion for the log-exponential power modelDIC_LEP
Deviance information criterion for the log-Laplace modelDIC_LLAP
Deviance information criterion for the log-logistic modelDIC_LLOG
Deviance information criterion for the log-normal modelDIC_LN
Deviance information criterion for the log-student's t modelDIC_LST
Log-marginal likelihood estimator for the log-exponential power modelLML_LEP
Log-marginal likelihood estimator for the log-Laplace modelLML_LLAP
Log-marginal likelihood estimator for the log-logistic modelLML_LLOG
Log-marginal Likelihood estimator for the log-normal modelLML_LN
Log-marginal Likelihood estimator for the log-student's t modelLML_LST
MCMC algorithm for the log-exponential power modelMCMC_LEP
MCMC algorithm for the log-Laplace modelMCMC_LLAP
MCMC algorithm for the log-logistic modelMCMC_LLOG
MCMC algorithm for the log-normal modelMCMC_LN
MCMC algorithm for the log-student's t modelMCMC_LST
Produce a trace plot of a variable's MCMC chainTrace_plot